On semisimplicity of module categories for finite non-zero index vertex operator subalgebras

نویسندگان

چکیده

Let $V\subseteq A$ be a conformal inclusion of vertex operator algebras and let $\mathcal{C}$ category grading-restricted generalized $V$-modules that admits the algebraic braided tensor structure Huang-Lepowsky-Zhang. We give conditions under which inherits semisimplicity from $A$-modules in $\mathcal{C}$, vice versa. The most important condition is $A$ rigid $V$-module with non-zero categorical dimension, is, we assume index $V$ as subalgebra finite non-zero. As consequence, show if strongly rational, then also rational following conditions: contains direct summand, $C_2$-cofinite modules, has dimension $V$-module. These results are algebra interpretations theorems proved for general commutative categories. generalize these to case superalgebra.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module categories of simple current extensions of vertex operator algebras

In this article, we study module categries of simple current extensions of vertex operator algebras. Under certain assumptions, we show that every module for a rational vertex operator algebra be lifted to a twisted module for an extended algebra with an abelian symmetry.

متن کامل

Representations of vertex operator algebras and braided finite tensor categories

We discuss what has been achieved in the past twenty years on the construction and study of a braided finite tensor category structure on a suitable module category for a suitable vertex operator algebra. We identify the main difficult parts in the construction, discuss the methods developed to overcome these difficulties and present some further problems that still need to be solved. We also c...

متن کامل

On the concepts of intertwining operator and tensor product module in vertex operator algebra theory

We produce counterexamples to show that in the definition of the notion of intertwining operator for modules for a vertex operator algebra, the commutator formula cannot in general be used as a replacement axiom for the Jacobi identity. We further give a sufficient condition for the commutator formula to imply the Jacobi identity in this definition. Using these results we illuminate the crucial...

متن کامل

A Nonmeromorphic Extension of the Moonshine Module Vertex Operator Algebra

We describe a natural structure of an abelian intertwining algebra (in the sense of Dong and Lepowsky) on the direct sum of the untwisted vertex operator algebra constructed from the Leech lattice and its (unique) irreducible twisted module. When restricting ourselves to the moonshine module, we obtain a new and conceptual proof that the moonshine module has a natural structure of a vertex oper...

متن کامل

Stratification for Module Categories of Finite Group Schemes

The tensor ideal localising subcategories of the stable module category of all, including infinite dimensional, representations of a finite group scheme over a field of positive characteristic are classified. Various applications concerning the structure of the stable module category and the behavior of support and cosupport under restriction and induction are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2022

ISSN: ['0377-9017', '1573-0530']

DOI: https://doi.org/10.1007/s11005-022-01523-4